

UEFI, HP, and Me:
A Bootloader Love-Hate Story

How one stubborn laptop taught me more about firmware psychology
than I ever wanted to know

Exhibit A: Partners in Bootcrime

This is a story about this lovely old HP business laptop and its
“interpretation” of the UEFI specification -- “Quirky” would be
generous.

Demystifying Bootloaders
Exhibit B (i):

Term Meaning Reality
BIOS Basic Input/Output System: A ghost of the

original IBM PC/XT
Bodges layered upon bodges; boots your hot new PC as
if it was fresh out of 1983

UEFI Unified Extensible Firmware Interface: The
modern replacement

A fresh take; smarter, flexible, but still occasionally
cursed

CSM Compatibility Support Module: A component
of UEFI that allows legacy booting (a.k.a
BIOS mode)

Usually throws away UEFI’s ability to recognize a GPT
disk set up for legacy booting, falling back to BIOS
heuristics for determining bootability

MBR Master Boot Record: A 512-byte relic that
supports, without hacks, a maximum of 4
partitions

Designed when a “large drive” was 10MB; yet somehow
still alive

GPT GUID Partition Table: Modern, robust, and
sanity-preserving

The only sane partitioning scheme for 2025;
theoretically supports BIOS booting

There are two ways you can boot a modern PC.
You can pretend it’s still 1983 and boot your super-duper Ryzen

Threadripper 7995WX exactly like it’s a 4.77 MHz Intel 8088.
BIOS (or CSM) will dutifully set up a handful of abstraction layers (in
16-bit real mode, mind you) to make your modern computer look like
an IBM 5150, load the first 512-byte sector of your 8 TiB NVMe SSD
into a sacred address somewhere in the first 640 kiB of your 128 GiB
of DDR5; then plunge head-first into it – still in real mode, still limited
to a 64 kiB code segment – and hope for the best.

Or, you can do it the sane way; with UEFI, which actually understands
partition tables and filesystems, natively supports USB and PCIe, can
load drivers, draw graphics, run applications, and directly boot your
operating system kernel with the CPU already in 64-bit protected
mode where it belongs.

Naturally, UEFI works equally well with both MBR and the preferred GPT
partitioning scheme.

BIOS works best with MBR-partitioned disks, but can be coerced into
booting GPT-partitioned disks. However, actually doing so is akin to
firmware necromancy – and best avoided unless you really enjoy
debugging ancient rituals; as I was to discover when I started poking
at Haiku for my previous talk. But, more on that later.

Meet the Stubborn Hardware

● HP Elitebook 8560p (circa 2011)
● Early Insyde-based EFI firmware
● EFI support primarily intended for internal

consumption (e.g. diagnostics and updates)
● Dual-drive setup: Crucial MX200 mSATA SSD

(Expansion bay) + original WD Black HDD,
both 500 GB

● Mission: A modern, reliable boot into any OS

Exhibit B (ii):

This laptop comes from that awkward moment in history where OEMs
were only just coming to terms with EFI on the PC platform – Of
course, HP had been doing it for years in the server space; they really
had no excuse for the horrors we are about to witness.

Regardless, UEFI of this time was mostly used for vendor tooling; it wasn’t
actually expected that end-users would use it.

Aside: The astute among you may ask; why mount the SSD in the
expansion bay (where it is throttled to SATA II), when it could be
running SATA III in the HDD bay? That’s a reasonable question, and it
originally came down to ease of mounting; but I have since rectified
this with a custom mounting bracket.

The Catalyst

● GPT disks booted in legacy mode
● Fragile BIOSBOOT shim prone to

breakage
● GRUB forgot how to boot Haiku

(after convincing it to reinstall)
● How hard can it possibly be to

boot UEFI?

Exhibit C: Legacy Booting GPT

Legacy booting of GPT disks is technically supported; and there is no
sane reason to use MBR partitioning in 2025; so that is exactly what I
did.

It would’ve worked, if it weren’t for those meddling partition managers.
You see, the majority of late pre-EFI BIOSes (and, apparently, some
early UEFIs that really should know better) will refuse to boot a disk
unless its MBR partition table – which lives on as part of the GPT
header – has the “boot” flag set.

Now, in theory, this is fine. GPT specifies a “BIOS BOOT” partition type
specifically for this purpose, and the boot flag in the MBR can redirect
boot to that just fine. And grub2-install will even set things up this
way if it detects the appropriate partition layout.

Unfortunately, on paper, virtually every GPT partitioning tool out there
completely ignores the BIOS BOOT partition and nukes the “boot” flag
from the protective MBR; rendering the disk unbootable. There is a
workaround for this, of course – “Hybrid MBR”; which is even more
fragile than it sounds.

So, there’s really only one option here. I need to convince the firmware to
boot its modern disks using modern UEFI.

 “Sure, I can help you with that! Absolutely!”
Exhibit D: The Accomplice

So, I asked GPT-5 for advice. It seemed like the right thing to do;
considering it had just finished a post-mortem on my Haiku install;
which boiled down to a corrupt BFS partition and a BFS formatting
tool saying “I made a new filesystem; she’s all good, bro” while
ignoring the leftover landmines the installer and its kernel was
repeatedly tripping over.

This began a journey of mutual discovery – mostly discovering how badly
HP can engineer UEFI; and had the side-effect of actually documenting
the journey so I can talk about it today.

It also birthed a several-month-long side project just so I can edit
refind.conf; but that’s a topic for another day.

The Observation

● Scary warning when enabling UEFI
● Installing OS in UEFI mostly works,

but can fail when setting bootvars
● HP ignores bootvars that are set
● CSM cannot be disabled
● “Boot From EFI File” is the only reliable

way to EFI boot external media

Exhibit E: Breaking Bootvars

It’s EFI, Jim; but not as we know it. Intimidating warnings, mysterious OS
installation failures, and a firmware that goes all in on pretending it’s
nothing more than a highly evolved BIOS wearing an EFI costume. It
gestures enthusiastically toward UEFI, while fundamentally refusing to
cooperate.

The Plan

● Boot Fedora in EFI mode using
SystemRescueCD

● Install rEFInd and an EFI bootloader
● ¯_(ツ)_/¯
● Profit

Exhibit F:

The plan was simple. Use a rescue disk to boot my Fedora installation in
EFI mode, install its favoured EFI bootloader (GRUB? Systemd-Boot?
EFI-stub? I wasn’t going to be picky), along with rEFInd as a nice boot
selector, shrug, and profit.

So, I found a rescue OS, and dived headfirst into attempting to boot
Fedora in EFI mode so I could install an EFI bootloader for it. This went
about as well as expected.

 The Reality

● After much ado, Wayland boots
● But no mouse, no WiFi
● Switch to VT, realise half of PCI devices

missing, fall back to wired Ethernet
● Download & install GRUB EFI and rEFInd

Exhibit G: Kernel Out-of-Body Experiences

Regardless, I eventually stumbled upon the magic incantation to mount
Fedora’s root inside SystemRescue’s initramfs and boot into it.
Eventually, I was greeted with SDDM on Wayland, and I thought it
would be smooth sailing from here. I was wrong.

Fortunately, SystemRescue’s kernel has an Intel 82579LM driver that
works. And fortunately, I have this little D-Link router I routinely use as
a reverse WiFi access point. So, I proceed to install GRUB and rEFInd to
the mounted Windows ESP on the SSD. Or, so I thought...

Bootloader Hide-and-Seek

● Dude, where’s my bootloader?
● Dude, there’s your bootloader
● How did it get there, Dude?
● Dude, we were so messed up

last boot

Exhibit H:

As it turned out, “mount” had completely lost its sanity and failed to
actually mount the ESP; so all those boot files ended up in a literal
“EFI” directory inside Fedora’s ext4 boot partition. So I put them where
they belong and rebooted.

 Firmware Forensics

● EFI Bootvars are either ignored or broken
● Install rEFInd to fallback path

(<ssd>/EFI/BOOT/BOOTX64.EFI)
● Set bootorder “Expansion Bay (UEFI)” then

“OS Boot Manager”
● HP tries to boot rEFInd, fails, reboots into

Windows on the same ESP
● Manually booting rEFInd works

Exhibit J: Ignoring EFI Fallback

After definitely not forgetting to regenerate grub.cfg, hijacking
SystemRescue’s initramfs to boot back into Fedora, and installing
GRUB properly; it was time to dive deeper down the rabbit hole. rEFInd
and Fedora now boot; but only if I directly point the firmware to
/EFI/BOOT/BOOTX64.EFI on the SSD’s ESP.

But, I ain’t going to use the equivalent of a “File Open” dialogue to boot →
an operating system – that’s insane!

 HP_TOOLS Experiment (Pt. 1)

● Try to repurpose “HP_TOOLS” at end of HDD as ESP
– Install rEFInd to “/EFI/BOOT/BOOTX64.EFI”
– Firmware ignores it (not in bootorder selection) and

continues booting Windows
● Use partitioner to “bless” HP_TOOLS as a real ESP

– Firmware still stubbornly refuses to acknowledge it
● Shrink from 5GB to 500MB?

– No change in behaviour
● Rename from “HP_TOOLS” to “ESP_HPTOOLS”?

– Completely indifferent

Exhibit K: Ignoring ESP Markers

The Windows utility I originally used to create the “HP_TOOLS” partition
and install the firmware update and diagnostics decided it should be
5GB. Why? Who knows. So, I figured I might as well try using it as an
ESP. This was met with some resistance.

So, I used fdisk and parted to “bless” it as a System ESP. Still no.
Let’s shrink it. Maybe it’s confused by a 5GB ESP? No.
Maybe it’s refusing because of the filesystem label? No.

 HP_TOOLS Experiment (Pt. 2)

● Rename “HP_TOOLS” to “ESP_HPTOOLS”
– Breaks connection to HP diagnostics
– Still refuses to enumerate HDD as an EFI boot candidate

● Copy ESP contents from SSD into “ESP_HPTOOLS”, pull SSD
– Firmware still refuses to acknowledge it as boot option
– No problem finding Windows Boot Manager, though

● Rename “ESP_HPTOOLS” back to “HP_TOOLS”
– Same result, but tools work

● Remove Windows Boot Manager from “HP_TOOLS”, masquerade rEFInd as bootmgfw.efi
– Finally, rEFInd boots by default

● Chaos theory: Reinstall SSD to expansion bay, with authentic ESP and Windows
bootloader

Exhibit L: Vendor Favouritism

Renaming the partition broke its connection to HP diagnostics, but
otherwise had no effect on the firmware’s boot behaviour.

So I copied everything from the SSD’s ESP onto the HP_TOOLS partition,
removed the expansion bay, and tried again.

This was when GPT and I came to the painful realisation that HP’s
firmware was really only ever looking for one thing; and it was neither
EFI boot variables nor standard EFI fallback paths.

So, I begrudgingly installed rEFInd as “/EFI/Microsoft/Boot/bootmgfw.efi”
and cursed VFAT for not letting me symlink to it. Victory by deception.

 Current Situation

● “HP_TOOLS” resides as first partition of first disk, as an ordinary
“msftdata” partition
– Contains rEFInd at “/EFI/Microsoft/Boot/bootmgfw.efi”
– Contains HP Tools at “/Hewlett-Packard”

● “EFI_SYS” is next partition, tagged as real ESP
– Contains all OS bootloaders, including Windows

● Firmware doesn’t care about special flags or partition names; just
boots the first “bootmgfw.efi” from the first FAT32 partition it sees

Exhibit M:

The most cursed thing about all of this? HP literally doesn’t care about
the partition type; well, at least, not on GPT. If it’s a FAT32 partition,
and it contains /EFI/Microsoft/Boot/bootmgfw.efi; then it’s booting it,
no questions asked.

So, now I have:
* A perfectly ordinary, innocuous-looking data partition that’s secretly an

ESP with rEFInd as a trojan horse.
* Next door to that, a real ESP, containing real bootloaders for real OSes
* A UEFI-ish firmware that is blissfully unaware of all the chaos it has

created.
I wish that was the end of the story; but the worst is yet to come.

WiFi Woes
Exhibit OMG:

Following a recent kernel update, my Centrino WiFi card decided to
destabilize, fall off the PCI bus, and take down half the kernel with it.
So, I decided it was time for an upgrade.

I did my due diligence; and selected a new-old-stock Intel 7260HMW;
with a genuine HP OEM part number on it; from PB-Tech. An original
HP replacement part for an original HP laptop. Couldn’t get any
simpler, right?

 HP Firmware – The Gift that Keeps on Giving

● Of course HP’s 2018
firmware rejects HP’s own
OEM-approved genuine
replacement part, on sale
since 2013

● Because, why wouldn’t it?
● Why would anybody want

a 7260HMW when they
can have a Centrino 6205
with broken drivers?

Exhibit P: Maliciously Disabling Hardware

Wrong. Hewlett Packard had seven years to either add this module to the
firmware’s whitelist (which would’ve been reasonable, since both
products were on the market at the same time), or even to just disable
the whitelist when they discontinued support for the laptop (the 2018
firmware was released long after this model was sunset). Instead, they
doubled down. They chose violence.

And it’s one thing to show a nag screen on boot; but to power-gate the
slot so the OS can’t even see it? That’s just petty. So now I have a
perfectly acceptable, perfectly capable mini PCI express WiFi 5 + BT 4
card that isn’t even useful as a paperweight. Thanks, HP!

But, throughout this journey, we haven’t even answered the most
important question yet.

 But, Can it Run DOOM?
Exhibit S: UEFI Booters

Can it run DOOM? Well, can it?

 But, Can it Run DOOM?

● No. Even demons tremor at the
horrors of HP’s mutilated Insyde
BIOS

● HP’s priority isn’t booting your OS
● Bob wants a Bonus; so bundle in:

– An offline PIM EFI app (QuickLook)
– An instant-on OS (QuickWeb, aka

SplashTop)
– An SMM calendar that replaces the

Windows boot screen (DayStarter)

Exhibit T: Subverting SMM for Frivolous Features

DOOM runs everywhere; or, at least, that’s what the meme suggests.
But, you see, HP’s priority was not to implement UEFI in any way that

is actually useful to end users. If it can multitask a Personal
Information Manager in System Management Mode while
simultaneously booting Windows 7 in CSM mode; then that’s
“Enterprise Ready” and Bob gets his bonus. Obviously, a firmware
should not be trusted to manage your hardware if it can’t even
manage your schedule.

DOOM died the moment it tried to draw a pixel. When prompted,
the AI was unable to determine if this is a bug or a feature.

 Thank You!

NO! I
WILL NOT
EFI BOOT

LINUX!

AND YOU
CAN’T

MAKE ME!

Brendon Green and ChatGPT-5: Partners in Bootcrime

Exhibit U: Partners in Bootcrime

So there you have it.
After about a week of negotiation, firmware psychology, and light

identity fraud…
my EliteBook finally boots like a normal computer. Well, almost.

HP: “I don’t wanna boot Linux.”
Me: “You’re gonna.”
HP: “NOOT NOOT!”
Me: disguises rEFInd as Windows
HP: “Welcome back, old friend!”

rEFInd now lives in witness protection, dressed as Windows,
and Fedora loads like nothing ever happened.

Thank you for joining me.
And remember: next time someone tells you “UEFI just works,”
NOOT NOOT.

And if there’s anybody here from HP; I’d love a quick word. Outside!

