

Self-hosting, self-defense

Tom Ryder
tom@sanctum.geek.nz

https://sanctum.geek.nz/

mailto:tom@sanctum.geek.nz
https://sanctum.geek.nz/

Setting the scene—1/4
● I host a cgit server with my Git projects:

https://dev.sanctum.geek.nz/cgit
● I try not to use GitHub when I can avoid it:

https://sanctum.geek.nz/why-not-github.html
● Publishing Git repositories with free software is

pretty easy, and it’s good free software juju.

https://git.zx2c4.com/cgit
https://dev.sanctum.geek.nz/cgit
https://sanctum.geek.nz/why-not-github.html

Setting the scene—2/4
● Git repositories can be complex, and are

inherently reference-dense.
● Repositories, commits, tags, branches, trees,

objects, reflogs, submodules, diffs…
● When displayed on a web page, this amounts

to lots of links.

Setting the scene—3/4
● All these links often mean a lot of attention from

bots: programs acting like users to get data.
– Usually poorly-written bots…
– Just because there are a lot of links doesn’t mean the

content’s worth indexing.
– A bot would never care to haunt my dotfiles!
– …right?

https://dev.sanctum.geek.nz/cgit/dotfiles.git

Setting the scene—4/4
● Usually, the bots aren’t a problem.
● Heck, usually, I don’t even notice.
● Bandwidth is cheap, and cgit pages are only a

few kibibytes.
● A bot requesting a few thousand pages over a

few days isn’t a big deal.

Business as usual—1/5
● If a bot does get bothersome, I first politely

shoo away its user agent in robots.txt:

User-Agent: ClassicBot/0.1
Disallow: /

https://www.robotstxt.org/

Business as usual—2/5
● If, after a day or two, it’s still bothering the

server, I block its user agent in Apache HTTPD:

BrowserMatch ClassicBot bad_bot
Require not env bad_bot

Business as usual—3/5
● And then…well, that’s usually enough.

● Sometimes, a nasty bot will pretend to be a real
person using a browser, so I can’t block it
reliably:

Mozilla/5.0 (Windows NT 10.0; Win64;
x64) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/135.0.0.0 Safari/537.36

Business as usual—4/5
● In that case, I have to think just a little bit (!)
● I identify the bot, usually by the number of

requests per IP, its not asking for CSS or
JavaScript, or images, etc…

● …and block the offending IP addresses with
HTTP 403 Forbidden.

Business as usual—5/5
● I’ve followed this pattern for years, both at home

and at work, with only minor variations all that time.
● I could do it in my sleep…awk, grep, ip route
add blackhole…

● Sometimes a botnet is bigger... maybe a few
hundred hosts. Gather a list, block them all, and
I’m done.

But things have been a bit…
different in 2025.

Attack begins—1/2
● Through late February and much of March, the

sanctum.geek.nz webserver performed really
badly.
– Exhausted Apache HTTPD process slots
– Very slow response times
– Memory exhaustion (kernel killing processes!)
– Eventually locking up completely…

100 GiB of traffic in a month…

Attack begins—2/2
● On inspection of the logs, I was getting requests from a

botnet…a big one.
● And more sophisticated than usual:

– Presenting with user device browser agents…
– With plausible-looking requests…
– Coming from many different addresses...
– Both standard IPv6 and legacy IPv4…
– All asking for pages from my dotfiles!

https://dev.sanctum.geek.nz/cgit/dotfiles.git

Mitigation begins—1/3
● So, I knuckled down and got to work blocking it.

Annoyed, but not really worried at this point.
● I randomly sampled a few of the IPs. They were all

residential, from end-user ISPs, all around the world.
– No, not all Brazil or Russia…
– No server rooms, really. No big iron.
– Normal people’s homes.
– Perhaps oddest: not a single Amazon IP.

Mitigation begins—2/3
● They were from many different networks

(autonomous systems). Even blocking
countries wasn't going to work.

● Literally thousands of requests per minute…

● And it was getting worse.

Mitigation begins—3/3
● A lot of the randomised fake user agents

were…implausible.
● Internet Explorer 5.5 on Windows CE in

Burmese, from a French IP? Cool story, bro.
● I made a list of the weirdest ones, and started

collecting IP addresses.

Oh, the naïveté!—1/2
● Soon, I had a nice automatic loop going:

1. Detect particularly implausible user agent.

2. Add the IP address to an Apache HTTPD block list.

3. Reload Apache HTTPD every few minutes.

4. Watch as the 403s start rolling in!

Oh, the naïveté!—2/2
● Except…they didn’t.
● And when I got above about 100,000 Require
not ip directives, Apache HTTPD was getting
very slow to reload…

● And the botnet was still getting faster. Coming in
massive waves now…over 100,000 requests per
hour.

Let’s look at a couple of videos…

A new kind of botnet—1/2
● Almost every IP was making a single request, and

then never turning up again.
● A few of them requested two or three pages.
● I churned through software firewall IP blocks, untiI I

had blocked 3 million addresses, with no
improvement…

● …and accepted this wasn’t working.

A new kind of botnet—2/2
● This was so weird to me that for a while I was wondering

if someone was tricking me or had hacked me.

● How could it possibly be coming from so many IPs? No
(classical) botnet is that large.

● But everything I checked showed the traffic was real.

● The TCP handshake worked both ways.

A new kind of botnet—3/3
● “Why not just take that one site down for a while?”
● I did, for two days—the requests didn’t stop.
● Even just fielding them with 403 Forbidden over

and over was straining Apache HTTPD.
● Not to mention my looming SiteHost bandwidth

bill...

Slough
● I won’t lie: by this point I was pretty angry.
● I’d spent hours over two weeks fighting off the botnet,

with essentially no progress.
● My Jitsi server for tabletop games was unstable.
● I was consuming gibibytes of bandwidth a day just

answering the botnet’s ceaseless requests.
● I needed a new strategy.

https://jitsi.org/

Weight of souls—1/2
● I rolled out Anubis, a proof-of-work challenge

proxy.
● It issues human-presenting browsers a JavaScript

crypto challenge, and doesn’t let it past until it’s
solved.

● For a real person on a modern computer, it’s only a
few seconds.

https://anubis.techaro.lol/

Weight of souls—2/2
● The bots didn’t try to solve the challenge, so they just

kept loading the Anubis page from RAM.
● This helped a bit with resource exhaustion, as data

wasn’t being being pulled from git and rendered as a
web page.

● Any human with JavaScript enabled—
and well-behaved bots—could still browse
the repositories.

Early and often—1/8
● But what to do about the massive amount of

traffic?
● My SiteHost plan charged extra for international

bandwidth over 100 GiB a month.
● I needed to cut the bot requests off as early as

possible…and then hope they gave up.

Early and often—2/8
● I did a bit of research into how a botnet could be so

massive, and learned about residential proxies.
● These are formed by software like VPNs and browser

extensions that offer features like watching NetFlix as
served in another country with a few clicks.

● In return, the company sells bandwidth on the user’s
connection to anyone who wants it.

● So: a botnet, with a veneer of legitimacy.

Early and often—3/8
● This seemed the most likely explanation for how

millions of IPs were apparently interested in
scraping my Git repository.

● So a relatively small set of computers was using a
massive network of SOCKS proxies to send a
phenomenal number of unblockable requests…
hmm.

Early and often—4/8
● So what else could all the requests have in

common that might help me identify them?
● Any unusual headers? Nope, all looked pretty

normal. Accept:, Accept-Language:,
Content-Type:, all used correctly.

Early and often—5/8
● What about TLS? They’re all connecting to my

HTTPS endpoint.
● I wonder if they all negotiate the complexities of

HTTP over TLS with SNI the exact same way?
● The same protocols, the same supported ciphers

and algorithms…
● Is there a way to fingerprint that…?

Early and often—6/8
● I ran tcpdump(8) on my public interface for a bit

to record all the traffic and get some raw data:
$ sudo tcpdump -w pcap -i enX0 \
 tcp and dst port 443

● The vast majority of the traffic in the packet
capture file was indeed the botnet.

https://www.tcpdump.org/

Early and often—7/8
● I ran JA3 over the packet capture to get TLS client

fingerprints…
● And every single botnet request had the same hash

fingerprint:
5cc600468c246704e1699c12f51eb3ab

● None of the legitimate requests had this signature.
● There were no search engine results for it.

https://engineering.salesforce.com/tls-fingerprinting-with-ja3-and-ja3s-247362855967/

Early and often—8/8
● I installed the Suricata firewall, and put it into

NFQ mode.
● Suricata had one rule: drop any traffic matching

that JA3 HTTPS signature.
● I put all my incoming HTTPS traffic through it…

https://suricata.io/

Sweet, sweet
silence.

Victory—1/2
● The server was at once perfectly responsive.
● The load average plummeted.
● My Jitsi instance worked perfectly.
● The Apache HTTPD logs for the site hummed

gently with real traffic.
● One little hash had fixed everything.

Eventually, the botnet gave up and stopped.

Victory—2/2
● A few days later, I found a blog post (in French)

by someone who seemed to be having very
similar problems to me…

● I replied to their Fediverse post, to see if I could
help out with my new powers.

https://dryusdan.space/lia-et-forgejo
https://dryusdan.space/lia-et-forgejo

But why?!
● People think this new generation of bots is scraping for

Large Language Model (LLM) training content.

● The timing seems right, given LLM mania (May 2025).

● However, I have no proof. It’s a guess.

● I don’t know what the bots were after from me.

● I think they just got stuck on the many links.

Takeaways
● Botnets and sysadmins are still in an arms race.
● IP blocks don’t help with residential proxies.
● Behavioral analysis in general is powerful.
● JA3 and TLS client signatures are great.
● Suricata and Anubis are also great.

Questions?
● Anubis
● JA3
● Suricata
● tcpdump

Email: tom@sanctum.geek.nz
Website: https://sanctum.geek.nz/
Fediverse: @tejr@mastodon.sdf.org

https://anubis.techaro.lol/
https://engineering.salesforce.com/tls-fingerprinting-with-ja3-and-ja3s-247362855967/
https://suricata.io/
https://www.tcpdump.org/
mailto:tom@sanctum.geek.nz
https://sanctum.geek.nz/
https://mastodon.sdf.org/@tejr

