
Reverse Engineering

Making ASUS laptops work better in Linux
And no I did not finish these slides

Yes I worked right up until I left home

2

Who am I?

● Work for JASIC Technology Europe on welding machines
– Embedded Linux, QT based HMI, mobile application in Flutter

● Official maintainer of most ASUS platform stuff in kernel
– Slowly shifting things to be standardised

● Wrote helper suite for laptops
● Rewrote the entire Doom engine in Rust because why not?

3

So many patches!

4

What is reverse
engineering?

5

Reverse engineering is..

● Not just reading assembly
● The art of figuring out how that black-box works
● Analysis of data streams

– Pattern recognition (we’re good at this)
– Cause and effect

● A lot of searching and piecing together information

6

What I’ll cover (try to)

● USB HID data and structure
● Searching for clues in binaries
● Analysing DLL in Cutter or Ghidra after finding clues
● Microsoft WMI (like it or not, can’t avoid it)

– Probably next year
● What goes in to the kernel

7

5 years of progress

● Started with a barely functioning GX502
● Wireshark captures of USB data

– Cause and effect, look for patterns
● USB HID structure

– Report ID
– Endpoints
– Packets: |5a|d1|02|0n|2c|01|03|00|00|00|00|00|00|00|00|

8

5 years of progress

● Reverse engineered DLL
– Found many debug strings intact
– Cross referenced logs
– Find where those strings were used and summon ancient gods

● Initially added willy-nilly to asus-wmi
● Now written a new driver, asus-armoury

– Using firmware_attributes class

9

Firmware Attributes

 ❯ sudo fwupdmgr get-bios-setting --json
{
 "BiosSettings" : [
 {
 "Name" : "ppt_fppt",
 "Description" : "Set the CPU slow package limit",
 "Filename" : "/sys/class/firmware-attributes/asus-armoury/attributes/ppt_fppt",
 "BiosSettingId" : "com.asus-armoury.ppt_fppt",
 "BiosSettingCurrentValue" : "80",
 "BiosSettingReadOnly" : "false",
 "BiosSettingType" : 2,
 "BiosSettingLowerBound" : 5,
 "BiosSettingUpperBound" : 150,
 "BiosSettingScalarIncrement" : 1
 },

10

HID Packet Structure

11

Don’t nuke Windows on new hardware

● Windows is your baseline
– Fastboot can be a pain in the arse

● The applications will provide many things:
– Action outputs to sniff
– Libraries to slice and dice

● Worst case: toggle something in windows and see if you can
find the effect in Linux

12

HID (Human Interface Descriptor)

Interface Descriptor:
 bLength 9
 bDescriptorType 4
 bInterfaceNumber 5
 bAlternateSetting 0
 bNumEndpoints 1
 bInterfaceClass 3 Human Interface Device
 bInterfaceSubClass 1 Boot Interface Subclass
 bInterfaceProtocol 1 Keyboard
 iInterface 1 ASUSTeK Computer Inc.
 HID Device Descriptor:
 bLength 9
 bDescriptorType 33
 bcdHID 1.10
 bCountryCode 0 Not supported
 bNumDescriptors 1
 bDescriptorType 34 Report
 wDescriptorLength 240
 Report Descriptor: (length is 240)
 Item(Global): Usage Page, data= [0x01] 1
 Generic Desktop Controls
 Item(Local): Usage, data= [0x05] 5
 Gamepad
 Item(Main): Collection, data= [0x01] 1
 Application
-- Continued over there ->

 Item(Global): Report ID, data= [0x0b] 11
 Item(Main): Collection, data= [0x00] 0
 Physical
 Item(Local): Usage, data= [0x30] 48
 Direction-X
 Item(Local): Usage, data= [0x31] 49
 Direction-Y
 Item(Global): Logical Minimum, data= [0x00] 0
 Item(Global): Logical Maximum, data= [0xff 0xff] 65535
 Item(Global): Physical Minimum, data= [0x00] 0
 Item(Global): Physical Maximum, data= [0xff 0xff] 65535
 Item(Global): Report Count, data= [0x02] 2 (X AND Y)
 Item(Global): Report Size, data= [0x10] 16 (2x bytes)
 Item(Main): Input, data= [0x02] 2
 Data Variable Absolute No_Wrap Linear

 Item(Main): End Collection, data=none

This is the ROG Ally, it uses the same ITE MCU as laptops.

Output report, helpful for hid-asus-ally driver
(gamepad part)

13

The HID packet (ASUS ROG Azoth)

14

Pattern Recognition (ASUS ROG Ally X)

15

Filtering interesting things (ASUS ROG Ally 1 or X)

Right-click

16

Data Collection (ASUS ROG Ally, remapping)

5ad102062c0200970000000000000000040000000002824d00000002009600000000000
000000500001e00

17

Data Collection (effects of actions)

5ad102062c0200970000000000000000040000000002824d00000002009600000000000
000000500001e00

18

Ask Cthulhu for help

19

Great my soul is gone, now
what?

20

Kernel work, or userspace HID raw

● Why not both?
– Userspace requires root. asusd is a daemon exposing *safe* dbus

interfaces for these things.
– Kernel patches move things out of userspace
– Progressive move to kernel

● Pet peeve: interpreted languages do not belong in ring-0
– Don’t slow my systems down with bloat

21

What’s in a kernel patch?

22

The Ally handheld driver

● Nearly 3000 lines
● All features supported

– Gamepad
– RGB
– Configuration (remap, calibrate, deadzones etc)

● Standalone, but requires nothing else to grab the HID
endpoints

23

The hid-asus driver

● Generic, it supports almost every keyboard
● Lots of quirks
● ASUS is surprisingly good at keeping things standardised
● Almost all keyboards use an ITE device for MCU

– USB and I2C
– TUF laptops use WMI to control RGB

24

So far?

● Find the device and watch I/O
– Find patterns, cause and effect mapping
– Write small test apps to verify

● Write the kernel drivers
● Write userspace apps to use these safely

– Daemons exposing safe dbus interface + user apps

25

What to aim for

Daemon

sysfs
interfaces

dbus interfaceApp

26

Sometimes you just need secrets whispered to you

Many many hours of ruthless testing and prayers to the great old ones had led
me to this conclusion earlier but the data was still spears thrown in the dark.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

