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● In principle, I love VPNs.



  

VPNs suck—2/4
● In principle, I love VPNs.
● In practice, I hate them.

– Poor stability
– Brittle and confusing configuration
– Snake-oil “security” vendors
– Proprietary software



  

VPNs suck—3/4
● Proprietary software for VPNs is not acceptable since 

Snowden.
● Your VPN must be free software, open for the public to audit 

and control.
– This is not negotiable.
– It’s as important as the endpoints’ operating systems.

● FortiClient VPN, Juniper Secure Connect, Sophos VPN
…all rubbish.

https://en.wikipedia.org/wiki/Edward_Snowden#Global_surveillance_disclosures


  

VPNs suck—4/4
Just in case you still trust big security vendors 
to get this sort of thing right…

FortiGuard Used Hardcoded Key, XOR to Encrypt Communications—Bleeping Computer, November 25, 2019

https://www.bleepingcomputer.com/news/security/fortiguard-used-hardcoded-key-xor-to-encrypt-communications/


  

VPN requirements
● Must be free software.  No exceptions.
● Must be cryptographically sound (secure).
● Must not have too much overhead (fast).
● And—let’s be honest…

…must be easy…
…or at least straightforward.



  

IPsec—1/2



  

IPsec—2/2



  

Good enough—1/2
OpenVPN ticks all the 

must-have boxes.
● Survived a long time as such: first 

released in 2001.
● This talk isn’t an OpenVPN bashing 

session.  Thank you to the OpenVPN 
developers!

https://openvpn.net/


  

Good enough—2/2
● But setting up OpenVPN is a pain.
● The correct approach is still to roll your own X.509 PKI 

Certificate Authority for peer authentication!
● Yeah, you can do symmetric pre-shared keys…

(but please don’t…it’s insecure, and it doesn’t scale)
● Easy-RSA eases the pain a little.

– If you’re stuck on OpenVPN, or even need a TLS tunnel
with an ad-hoc PKI anywhere else, give that a try.

https://easy-rsa.readthedocs.io/en/latest/


  

Lean on me—1/4
So, I sinned; I just used OpenSSH.

● It’s free software.
● It runs on anything, even Windows.
● It tunnels TCP traffic anywhere I want.
● It creates TCP proxies for me 

anywhere I want (SOCKS).
● I can mount network filesystems over 

it (sshfs).

https://www.openssh.com/
https://en.wikipedia.org/wiki/SOCKS
https://en.wikipedia.org/wiki/SSHFS


  

Lean on me—2/4
● After all, authenticating peers 

with OpenSSH is really easy.
● Especially with the newer short 

ed25519 keys.
$ ssh-genkey -t ed25519
$ ssh-copy-id user@host

● If only a VPN could be that 
easy…

https://www.cryptopp.com/wiki/Ed25519


  

Lean on me—3/4

“When SSH is the foundation of 
your security architecture, you 
know things aren’t working as 
they should.”

—Rob Pike

Credit: Kevin Shockey

https://en.wikipedia.org/wiki/Rob_Pike
https://www.flickr.com/photos/shockeyk/4833152910/in/photostream/


  

Lean on me—4/4

● It’s great that we can use SSH like this…
● …but we probably shouldn’t.
● It’s for a secure login shell, after all.
● It’s not a general-purpose network 

encryption tool.
● It’s certainly not a VPN.
● It’s big and complicated enough already.



  

Enter WireGuard
● We already have Jason A. 

Donenfeld to thank for:
– cgit (CGI web frontend for Git)
– pass (GNU Bash and GnuPG 

password manager)
● Now we have WireGuard, too. Credit: ISRG

https://git.zx2c4.com/cgit/
https://www.passwordstore.org/
https://www.wireguard.com/
https://www.abetterinternet.org/post/radiant-award-jason-donenfeld/


  

What is WireGuard?
● Layer 3 (IP) point-to-point VPN
● Copy-pasteable SSH-style public keys
● IPv4 and IPv6
● Works well with modern Linux features

– Containers
– Network namespaces

● Ported to other operating systems, too
● Lots of ports already (Rust, Go…)



  

Short and sweet
WireGuard’s code is about

1%
of OpenVPN’s in size.

(Not a typo!)

https://arstechnica.com/gadgets/2018/08/wireguard-vpn-review-fast-connections-amaze-but-windows-support-needs-to-happen/


  

Demonstration—1/10

Please watch this screencast video first.
(video/mp4, 2m25s, 1.8 MiB)

(Archived version here.)

Tom will comment briefly as the video plays.
Don’t worry, we’ll go over it again 

afterwards, slide-by-slide.

https://www.wireguard.com/talks/talk-demo-screencast.mp4
https://web.archive.org/web/20220430031705/https://www.wireguard.com/talks/talk-demo-screencast.mp4


  

Demonstration—2/10

Generate Curve25519 keys
● Done with the generic wg(8) tool
● One key pair (private and public) on both peers
● Public key can be derived from private key
● Keys are represented in base64
● Short, copy-pasteable



  

Demonstration—3/10

Create WireGuard interface wg0 on peerA
● “wireguard” is a valid network interface type to ip(8)
● Add an interface and an address 10.0.0.1/24
● Set the interface’s private key as created before
● Raise the interface

https://man7.org/linux/man-pages/man8/ip.8.html


  

Demonstration—4/10

Create WireGuard interface wg0 on peerB
● Same again; add address 10.0.0.2/24



  

Demonstration—5/10

List key information on both peers
● Public and private keys on both
● Listening port (default udp/51820) on both



  

Demonstration—6/10

Add peerB’s public key and address to peerA
● The peer’s key has to be known to WireGuard
● The peer may only use the configured addresses



  

Demonstration—7/10

Add peerA’s public key and address to peerB
● Same again
● This is a peer-to-peer link, no “server” or “client”



  

Demonstration—8/10

We have ICMP ECHO (ping)!



  

Demonstration—9/10

Interface information is available
● Including traffic statistics



  

Demonstration—10/10

(Aside: As a software community, can we please do these 
sorts of videos more often to demonstrate new software?)



  

Cryptokey routing—1/2
● You define which addresses are valid for which keys.
● WireGuard checks that configuration when 

processing packets.
● Traffic accepted encrypted with key A has to be from 

one of key A’s addresses.
[Peer]
PublicKey = aGV5LCBnbyBhd2F5LCB0aGlzIGlzIGEgc2VjcmV0IQo=
AllowedIPs = 192.0.2.1/32, 198.51.100.0/24



  

Cryptokey routing—2/2
● You can set networks in AllowedIPs.
● This allows one peer to act as a VPN gateway 

for its configured peers:

[Peer]
PublicKey = bG9sIHlvdSBtdXN0IGJlIHZlcnkgYm9yZWQgICAgIAo=
AllowedIPs = 0.0.0.0/0



  

Network namespaces—1/7
● Linux has a feature called network namespaces.
● You can create (or move) separate interfaces, with their 

own addresses and routing tables, into separate 
namespaces.

● Processes can be set to run in a network namespace.
● I like to use systemd for this, but there are other ways.

https://man7.org/linux/man-pages/man7/network_namespaces.7.html


  

Network namespaces—2/7
WireGuard has a cool property that works well with Linux network 
namespaces:

WireGuard interfaces “remember” the namespace they were created 
in, via the original UDP socket, and continue passing traffic back 
through that endpoint, even when moved to another namespace.

Routing & Network Namespace Integration

https://www.wireguard.com/netns/


  

Network namespaces—3/7
● “Err…translation?”
● Suppose you have two LibreWolf browser profiles 

on your home computer:
– One, you need to run through a WireGuard VPN to 

your workplace (version control, work wiki…)
– The other, you want to keep using on your home LAN 

as normal (home NAS, girlfriend’s calendar…)

https://librewolf.net/


  

Network namespaces—4/7
● Create a blank WireGuard interface.
● Create a new network namespace named “work”.
● Move the blank WireGuard interface into the “work” namespace.
● Add addresses, configuration, routes, DNS servers. etc, to the 

WireGuard interface.
● Use firejail or a similar tool to run one browser instance inside the 

“work” namespace.
● Now you can Alt-Tab between work browser and home browser…
● …or any other network program.

https://firejail.wordpress.com/


  

$ cat /etc/network/interfaces.d/wg0 
auto wg0
iface wg0 inet manual
        up ip netns add work
        up ip link add $IFACE type wireguard
        up ip link set $IFACE netns work
        up ip -n work address add 192.0.2.2/24 dev $IFACE
        up ip netns exec work wg setconf $IFACE /etc/wireguard/$IFACE.conf
        up ip -n work link set dev $IFACE up
        up ip -n work route add default via 192.0.2.1
        down ip netns del work

$ firejail --netns=work librewolf -P work --no-remote

Network namespaces—5/7



  

Network namespaces—6/7
● Warning: The first time you get this working, 

you’ll get mad you had to wait until 2022 to be 
able to do it.

● WireGuard is like that…



  

Network namespaces—7/7
● If you use Docker or similar container software, 

you’re probably already getting ideas here.
● You can manufacture secure, cryptographically-

authenticated network interfaces on your root 
namespace, and pass them in to your containers as 
their only contact with the outside world.

● This is left as an exercise for the viewer…

https://www.docker.com/


  

Questions?

WireGuard website 

Email: tom@sanctum.geek.nz
Website: https://sanctum.geek.nz/
Fediverse: @tejr@mastodon.sdf.org

https://www.wireguard.com/
mailto:tom@sanctum.geek.nz
https://sanctum.geek.nz/
https://mastodon.sdf.org/@tejr
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