

Trusted Networks with WireGuard

Tom Ryder
tom@sanctum.geek.nz

https://sanctum.geek.nz/

mailto:tom@sanctum.geek.nz
https://sanctum.geek.nz/

● In principle, I love VPNs.

VPNs suck—2/4
● In principle, I love VPNs.
● In practice, I hate them.

– Poor stability
– Brittle and confusing configuration
– Snake-oil “security” vendors
– Proprietary software

VPNs suck—3/4
● Proprietary software for VPNs is not acceptable since

Snowden.
● Your VPN must be free software, open for the public to audit

and control.
– This is not negotiable.
– It’s as important as the endpoints’ operating systems.

● FortiClient VPN, Juniper Secure Connect, Sophos VPN
…all rubbish.

https://en.wikipedia.org/wiki/Edward_Snowden#Global_surveillance_disclosures

VPNs suck—4/4
Just in case you still trust big security vendors
to get this sort of thing right…

FortiGuard Used Hardcoded Key, XOR to Encrypt Communications—Bleeping Computer, November 25, 2019

https://www.bleepingcomputer.com/news/security/fortiguard-used-hardcoded-key-xor-to-encrypt-communications/

VPN requirements
● Must be free software. No exceptions.
● Must be cryptographically sound (secure).
● Must not have too much overhead (fast).
● And—let’s be honest…

…must be easy…
…or at least straightforward.

IPsec—1/2

IPsec—2/2

Good enough—1/2
OpenVPN ticks all the

must-have boxes.
● Survived a long time as such: first

released in 2001.
● This talk isn’t an OpenVPN bashing

session. Thank you to the OpenVPN
developers!

https://openvpn.net/

Good enough—2/2
● But setting up OpenVPN is a pain.
● The correct approach is still to roll your own X.509 PKI

Certificate Authority for peer authentication!
● Yeah, you can do symmetric pre-shared keys…

(but please don’t…it’s insecure, and it doesn’t scale)
● Easy-RSA eases the pain a little.

– If you’re stuck on OpenVPN, or even need a TLS tunnel
with an ad-hoc PKI anywhere else, give that a try.

https://easy-rsa.readthedocs.io/en/latest/

Lean on me—1/4
So, I sinned; I just used OpenSSH.

● It’s free software.
● It runs on anything, even Windows.
● It tunnels TCP traffic anywhere I want.
● It creates TCP proxies for me

anywhere I want (SOCKS).
● I can mount network filesystems over

it (sshfs).

https://www.openssh.com/
https://en.wikipedia.org/wiki/SOCKS
https://en.wikipedia.org/wiki/SSHFS

Lean on me—2/4
● After all, authenticating peers

with OpenSSH is really easy.
● Especially with the newer short

ed25519 keys.
$ ssh-genkey -t ed25519
$ ssh-copy-id user@host

● If only a VPN could be that
easy…

https://www.cryptopp.com/wiki/Ed25519

Lean on me—3/4

“When SSH is the foundation of
your security architecture, you
know things aren’t working as
they should.”

—Rob Pike

Credit: Kevin Shockey

https://en.wikipedia.org/wiki/Rob_Pike
https://www.flickr.com/photos/shockeyk/4833152910/in/photostream/

Lean on me—4/4

● It’s great that we can use SSH like this…
● …but we probably shouldn’t.
● It’s for a secure login shell, after all.
● It’s not a general-purpose network

encryption tool.
● It’s certainly not a VPN.
● It’s big and complicated enough already.

Enter WireGuard
● We already have Jason A.

Donenfeld to thank for:
– cgit (CGI web frontend for Git)
– pass (GNU Bash and GnuPG

password manager)
● Now we have WireGuard, too. Credit: ISRG

https://git.zx2c4.com/cgit/
https://www.passwordstore.org/
https://www.wireguard.com/
https://www.abetterinternet.org/post/radiant-award-jason-donenfeld/

What is WireGuard?
● Layer 3 (IP) point-to-point VPN
● Copy-pasteable SSH-style public keys
● IPv4 and IPv6
● Works well with modern Linux features

– Containers
– Network namespaces

● Ported to other operating systems, too
● Lots of ports already (Rust, Go…)

Short and sweet
WireGuard’s code is about

1%
of OpenVPN’s in size.

(Not a typo!)

https://arstechnica.com/gadgets/2018/08/wireguard-vpn-review-fast-connections-amaze-but-windows-support-needs-to-happen/

Demonstration—1/10

Please watch this screencast video first.
(video/mp4, 2m25s, 1.8 MiB)

(Archived version here.)

Tom will comment briefly as the video plays.
Don’t worry, we’ll go over it again

afterwards, slide-by-slide.

https://www.wireguard.com/talks/talk-demo-screencast.mp4
https://web.archive.org/web/20220430031705/https://www.wireguard.com/talks/talk-demo-screencast.mp4

Demonstration—2/10

Generate Curve25519 keys
● Done with the generic wg(8) tool
● One key pair (private and public) on both peers
● Public key can be derived from private key
● Keys are represented in base64
● Short, copy-pasteable

Demonstration—3/10

Create WireGuard interface wg0 on peerA
● “wireguard” is a valid network interface type to ip(8)
● Add an interface and an address 10.0.0.1/24
● Set the interface’s private key as created before
● Raise the interface

https://man7.org/linux/man-pages/man8/ip.8.html

Demonstration—4/10

Create WireGuard interface wg0 on peerB
● Same again; add address 10.0.0.2/24

Demonstration—5/10

List key information on both peers
● Public and private keys on both
● Listening port (default udp/51820) on both

Demonstration—6/10

Add peerB’s public key and address to peerA
● The peer’s key has to be known to WireGuard
● The peer may only use the configured addresses

Demonstration—7/10

Add peerA’s public key and address to peerB
● Same again
● This is a peer-to-peer link, no “server” or “client”

Demonstration—8/10

We have ICMP ECHO (ping)!

Demonstration—9/10

Interface information is available
● Including traffic statistics

Demonstration—10/10

(Aside: As a software community, can we please do these
sorts of videos more often to demonstrate new software?)

Cryptokey routing—1/2
● You define which addresses are valid for which keys.
● WireGuard checks that configuration when

processing packets.
● Traffic accepted encrypted with key A has to be from

one of key A’s addresses.
[Peer]
PublicKey = aGV5LCBnbyBhd2F5LCB0aGlzIGlzIGEgc2VjcmV0IQo=
AllowedIPs = 192.0.2.1/32, 198.51.100.0/24

Cryptokey routing—2/2
● You can set networks in AllowedIPs.
● This allows one peer to act as a VPN gateway

for its configured peers:

[Peer]
PublicKey = bG9sIHlvdSBtdXN0IGJlIHZlcnkgYm9yZWQgICAgIAo=
AllowedIPs = 0.0.0.0/0

Network namespaces—1/7
● Linux has a feature called network namespaces.
● You can create (or move) separate interfaces, with their

own addresses and routing tables, into separate
namespaces.

● Processes can be set to run in a network namespace.
● I like to use systemd for this, but there are other ways.

https://man7.org/linux/man-pages/man7/network_namespaces.7.html

Network namespaces—2/7
WireGuard has a cool property that works well with Linux network
namespaces:

WireGuard interfaces “remember” the namespace they were created
in, via the original UDP socket, and continue passing traffic back
through that endpoint, even when moved to another namespace.

Routing & Network Namespace Integration

https://www.wireguard.com/netns/

Network namespaces—3/7
● “Err…translation?”
● Suppose you have two LibreWolf browser profiles

on your home computer:
– One, you need to run through a WireGuard VPN to

your workplace (version control, work wiki…)
– The other, you want to keep using on your home LAN

as normal (home NAS, girlfriend’s calendar…)

https://librewolf.net/

Network namespaces—4/7
● Create a blank WireGuard interface.
● Create a new network namespace named “work”.
● Move the blank WireGuard interface into the “work” namespace.
● Add addresses, configuration, routes, DNS servers. etc, to the

WireGuard interface.
● Use firejail or a similar tool to run one browser instance inside the

“work” namespace.
● Now you can Alt-Tab between work browser and home browser…
● …or any other network program.

https://firejail.wordpress.com/

$ cat /etc/network/interfaces.d/wg0
auto wg0
iface wg0 inet manual
 up ip netns add work
 up ip link add $IFACE type wireguard
 up ip link set $IFACE netns work
 up ip -n work address add 192.0.2.2/24 dev $IFACE
 up ip netns exec work wg setconf $IFACE /etc/wireguard/$IFACE.conf
 up ip -n work link set dev $IFACE up
 up ip -n work route add default via 192.0.2.1
 down ip netns del work

$ firejail --netns=work librewolf -P work --no-remote

Network namespaces—5/7

Network namespaces—6/7
● Warning: The first time you get this working,

you’ll get mad you had to wait until 2022 to be
able to do it.

● WireGuard is like that…

Network namespaces—7/7
● If you use Docker or similar container software,

you’re probably already getting ideas here.
● You can manufacture secure, cryptographically-

authenticated network interfaces on your root
namespace, and pass them in to your containers as
their only contact with the outside world.

● This is left as an exercise for the viewer…

https://www.docker.com/

Questions?

WireGuard website

Email: tom@sanctum.geek.nz
Website: https://sanctum.geek.nz/
Fediverse: @tejr@mastodon.sdf.org

https://www.wireguard.com/
mailto:tom@sanctum.geek.nz
https://sanctum.geek.nz/
https://mastodon.sdf.org/@tejr

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

