
 1

Selenium browser
automation

● 1. Selenium Webdriver with
a language library, e.g. Java

(Xpath very useful)

● 2. Selenium IDE for GUI
lovers (and siderunners)

 2

● 1. Selenium Webdriver with a language
library, e.g. Java

 3

Why use Selenium?

● OSS (Apache license) and free for web testing
● Fast and reliable, once you know its quirks
● Front end tests, giving you the assurance that changes aren’t breaking things
● Can be put in a CI pipeline (e.g Gitlab)
● Works with different browsers
● Works with different languages
● For creating bulk data, even performance testing

● Show video - “create job”

 4

Distro - Ubuntu 20.03

Browser - Firefox (v.83 - 93)

Java version: Installed Oracle (JDK 8.14)

IDE - Installed IntelliJ Idea IDE (v.20)

We need:
Java language bindings for Selenium
A webdriver library, i.e. for Firefox (versions very important!)
Any other packages, e.g. JUnit testing framework

 5

Install the webdriver language bindings
Went here - https://www.selenium.dev/downloads/

● under Selenium Clients and WebDriver Language Bindings
● downloaded for Java 4.0
● unzipped download & put it in /opt/selenium, set permissions

 6

In /opt/selenium

 7

Add the library to the project

● Made a new empty project
● made a new module
● Went to File >Project Structure >Modules >Dependencies, pushed +
● Selected the .Jar files in main selenium d/l folder, and in the libs folder > OK

 8

Add any packages needed

● Needed to add some libraries using Maven (package manager)
● from the main menu, select File | Project Structure
● Under Project Settings, select Libraries, click +
● Select From Maven to download a library from Maven, e.g. org.junit.jupiter (5.6)
● (push magnifying glass, then down chevron in select box)
● - also added org.slf4j (slf4j-simple 1.6)

 9

Add the driver library

● Downloaded geckodriver (for Firefox) - went here
● https://github.com/mozilla/geckodriver/releases
● Downloaded version 30
● Unzipped the .tar.gz file & put it in /opt/selenium/geckodriver
● set permissions

 10

A Selenium event

● Demowebapptest.localhost.com

 11

How to locate our element

● HTML structure / DOM (XML dialect)

● Recommend using XPath: a query language for selecting nodes from an XML document

e.g. path expression for our element:

//nav/ul/li/a[@href=’data-entry-form’]

(You can use CSS selectors but not as precise or efficient)

 12

XPath Basic Outline
Expression Description

/ Selects from the root node

// Selects nodes in the document that match, no matter where
they are

.. Selects the parent of the current node

@ Selects attributes

* Matches any element node

e.g.

(absolute) /html/body/div/nav/ul/li/a[@href=’/data-entry-form’]

(relative) //nav/ul/li/a[contains(@href=’data-entry-form’)]

 13

Set up driver, trigger event, assert

 14

● Show basic Intellij Java project

● Run it again with isSlowDemo = false

● Deliberately throw an error

 15

Selenium IDE
● A GUI playback tool that is in fact full-featured
● Usually installed as a browser extension / add-on
● Uses projects, tests and test suites

 16

 17

IDE features
● Allows tests to be embedded in other tests
● Allows you to run small scripts, i.e. Javascript
● Provides assert statements (and others that can be

used like asserts)
● Provides loops and conditions functionality
● Debugging and stepping through is available
● Stores its output as “.side” files in JSON format
● The .side files can be manually edited
● The .side files can be manually executed on the CLI by a

side-runner
● Similar to Webdriver, but has a lot of important

differences
● Good for anyone who doesn’t like to deal with lots of

code

 18

Try out - webappdemo
Try the Survey Form

● record some events
● Use “Select target in page” button
● Add an assert
● Rework again with xpath selectors

 19

Running a .side file with NodeJs

● Install nodejs
● Install npm (package manager)
● (install a webdriver if you haven’t already, e.g. geckodriver and add it to the PATH)
● Make a new project directory
● Install packages for selenium in the project

● Find the path to the side-runner index.js file, e.g.

node_modules/selenium-side-runner/dist/index.js
● Try a command on the CLI like:
● node [path-to-side-runner] -c “browserName=’firefox’” [path-to-side-file]

 20

“Gotchas”

● A lot of documentation online for Webdriver and the IDE is out of date
● Some of the official Selenium documentation for the IDE is wrong
● You need to match the browser version with the Webdriver version, especially for Firefox
● Don’t go for specific matches on page elements. Use contains() to be futureproof
● Sometimes wait or pause statements are necessary for testing on slow servers

(unavoidable)
● XPath patterns that work for one browser may not work in another
● XPath patterns that work in the IDE may not work in the side-runner
● Sometimes Selenium just gets confused, e.g. for the iframe or window to look for elements

in
● Sometimes in the IDE asserts have to be done in a Javascript snippet

● Show videos – “bad” and “good”

